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Let H = I A +  V on 12(B), where B is the Bethe lattice and V(x), x c B ,  are 
i.i.d.r.v.'s with common probability distribution p. It is shown that for distribu- 
tions sufficiently close to the Cauchy distribution, the density of states p(E) is 
analytic in a strip about the real axis. 

KEY W O R D S :  Anderson model; Bethe lattice; random Schr6dinger 
operator; density of states. 

1. I N T R O D U C T I O N  

The Bethe lattice B is an infinite connected graph with no closed loops and 
a fixed degree (number of nearest neighbors) at each vertex (site or point). 
The degree is called the coordination number and the connectivity k is one 
less the coordination number. 

The distance between two sites x and y will be denoted by I x -  Yt and 
is equal to the length of the shortest path connecting x and y. The finite 
volume A t will consist of all sites whose distance from a chosen origin is 
less than or equal to l. The boundary of Al, ~3At, will consist of nearest 
neighbor pairs (x, y )  such that x ~ A  t and yq~A t. 

The Anderson model on the Bethe lattice is given by the random 
Hamiltonian H = H o +  V on /2(B) = {u: B--* CI Y~x~B lu(x)l 2< oe}, where 

(Hou)(x) = 1 ~ u(y) (1.1) 
y : l x  Yl  - l 

and V(x), x ~ B ,  are independent and identically distributed random 
variables with common probability distribution #. The characteristic 
function of/~ will be denoted by h, i.e., h( t )=~ e -i'v d#(v). 
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Let Zt denote the characteristic function of A t. Define the measure dNl 
by 

f f (2)  dN,(2) 

and the measure dN by 

1 
,---7-7, t r ( f (H)  Z,) (1.2) 
l/Ill 

f f(2) dN(2)= E(f(H)(0,  0)) (1.3) 

for any bounded measurable function f. It is a consequence of the ergodic 
theorem (see Appendix) that dNz converges vaguely to dN P-a.s. (see, e.g., 
ref. 1). The integrated density of states N(E) is then defined by 

N(E) = f Z(~,E](2) dN(2) (1.4) 

and the density of states is given by p(E)=-N'(E). 
For the case k = 1 (the one-dimensional case), the integrated density 

of states is a Continuous function, (24) being log Holder continuous if the 
condition S log(1 + Ivl)dl~(v)< oo holds. (3) Both Campanino and Klein ~5) 
and March and Sznitman (6) proved in the one-dimensional case that if h(t) 
is exponentially bounded, then N(E) is analytic in a strip about the real 
axis. Kunz and Souillard (7) have announced results on the Bethe lattice 
concerning the analyticity of the density of states for distributions close to 
the Cauchy distribution, but no proofs have been provided. 

For the Cauchy distribution, i.e., d# = (2/n)(22 + x2) -1 dx, the density 
of states can be computed explicitly and is analytic for Jim E[ < 4. In this 
article we study the analyticity of the density of states for distributions 
sufficiently close to the Cauchy distribution. Our conditions will be stated 
in terms of h, the characteristic function of/~. We will only be interested in 
h(t) for t~>0 and we will only consider the right-hand-side derivatives at 
t = 0 .  

Introducing the Banach spaces 

S~ = {f :  [0, oo ) --, C absolute continuousl Ilfll s= 

1 } 
Ile~f(k)(t)l I ~ < oO 

k = 0  

where c~ > 0 and [[f[[ ~ = ess sup,~ Eo, oo)tf(t)[, we can now state our result. 
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Theorem 1.1. Let h0 be the characteristic function of the Cauchy 
distribution with parameter )~, i.e., ho(t)=e x' for t>~0. Then, for any 
6 > �89 + 1), there exists a neighborhood U around 0 in the space Sz such 
that if h - h o t  U, then p(E) is analytic in the strip l imE[ < e  for some 
~>0.  

We will study the density of states by analyzing the Green's function 
of H. The Green's function corresponding to our Hamiltonian H is given 
by 

G(x, y ; z ) =  ( x  I ( g - z ) - l l  y> (1.5) 

for x, y E B and Im z > 0. We will write G(z) = E(G(0, 0; z)). 
Since N(E)= E(0[  P ( - o %  E l  10}, where P is the spectral projection 

of H, we have that G(z) is the Borel transform of N(E) (e.g., refs. 8 and 9), 
i.e., 

= f dN(e)  
a(z) J 

and we have the following: 

(i) G(E+iO)=lim,~oG(E+iq) exists for a.e. E~R. 

(ii) Suppose G(E+ iO) exists for all E in an open interval I; then 
N(E) is absolutely continuous and p(E) = (1/r 0 Im G(E + iO). 

Thus, to obtain the analyticity of p(E), it suffices to prove the analyticity 
of G(E + iO). 

The operator H t will denote the operator H restricted to 12(Az) with 
Dirichlet boundary conditions. The Green's function corresponding to Ht 
will be denoted by 

Gt(x,y;z)=(x[ (Hz-z)  -1 [y}, x ,y~Al ,  I m z > O  

a,(z) = E(G,(0, 0; z)) (1.6) 

We will need the following proposition, whose proof will be postponed 
until Section 5. 

Proposition 1.2. If Im z > 0, then limt_~ oo Gl(x, y; z) = G(x, y; z). 
In particular, we have limt~ oo Gt(z) = G(z). 

In Section 2 we will use the supersymmetric replica trick to rewrite 
Gl(z) as a two-point function of a supersymmetric field theory. We will 
show that if h 0 is the characteristic function of the Cauchy distribution with 
parameter 2, then Gt(z) can be computed explicitly and converges to G(z), 
which is analytic in z for Im z > - 2 .  In Sections 3 and 4 we will examine 
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Gz(z) in a neighborhood of h0 in the space S~ with 0 < c~ < 2. Our expres- 
sion for G~(z) will give rise to a nonlinear equation and we will then apply 
an analytic implicit function theorem and a stability theorem to conclude 
that for any bounded interval I and 0 < c( < e, there exists a neighborhood 
U around ho in S~ such that if h e  U, then Gz(-) converges to a function 
G(. ) which is analytic in the region {z ~ C: Re z e / ,  Im z > -c(}.  This will 
give the analyticity of p(E) in the region {EEC:ReEeI ,  [ I m E l < e ' } .  
In Section5 we show that for any h satisfying h-hosS6 ,  for any 
6 > ( 1 / 2 ) ( k + 1 ) ,  we have, for some positive Eo< +oe and some e>0 ,  
the analyticity of p(E) in {Ee C: [Re El > Eo, lira E[ < e}. In Section 6 we 
will combine the results of Sections 3-5 to obtain Theorem 1.1. 

2. THE D E N S I T Y  OF STATES FOR THE C A U C H Y  
D I S T R I B U T I O N  

The supersymmetric replica trick (5'1~ says that if xl ,  x2EA t and 
Im z > 0, then 

Gt(xl, x2;z) = (xll  (Hi--z)  -1 IX2) 

= i  f Ip(xl)~(x2)exp { - i  
x c A I  

) 
~ (x) .  [(H,- z) ~](x)~ Dl~ 

(2.1) 

where q~(x) = (r O(x), ~(x)), ~0(x) e R  2, O(x) and ~(x) 
commuting "variables" (i.e., elements of a Grassmann algebra), 

~(x).  ~(y) = ~o(x). ~o(y) + �89 [~;(x) 4,(y) + ~(y) r 

and 

are anti- 

Dt~ = I] d~(x) where dq~(x) =-1 dry(x) dtp(x) d2~o(x) 
x E  AI 7[, 

To compute functions of $, ~, we expand in a power series that terminates 
after a finite number of terms due to the anticommutativity. The linear 
functional denoted by integration against dry(x)d$(x) is defined by 

f [ao+alO(x)+a2~(x)+a3~(x)~b(x)]d~(x)dO(x)= -a3 (2.2) 

Using the definition of Hz and averaging over the random potential, we 
obtain 

G,(z,h) = . . . . . . .  i f [l(q)2;z,h)[TB(z,h)( (TB(z,h) l) ~" )k]k+l ((192)d2q) 
(l 1) t imes 

(2.3) 
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where the dependence on h is indicated and 
fl(g02; z, h) = h((,o 2) e iz~~ B(z, h) denotes the operator 
fi(~o2; z, h), and T is the operator given by 

where ~o e R 2, 

multiplication by 

1 ,2) 
(Tf)(~o 2) = - T f e-i~~176 d2go ' 

Note that T preserves the value at 0, i.e., (Tf)(O) =f (0 ) .  
If one defines the Hilbert space (5) 

= {f :  [0, oo ) --+ C absolutely continuoust 

1 

Ilfll 2~ = E 
k = O  

) 
II 2 kr 1/2f(k)(r2)l[ 2 L2([O,c~),dr ) < 0() ) 

(2.4) 

and the subspace 

,,~fo= {.f e ~ ; f(O)=O } 

then one has that T is unitary on ~ and ~ o .  
For the case when the potential distribution is the Cauchy distribution 

with parameter 2, it is known that G(z) = Grree(z + i)0, where Gfree(z) is the 
Green's function of Ho (e.g., refs. 10 and 18). In particular, we get the well- 
known result N(E)= Nfree(E+ l"2). Thus, we proceed to compute Gfr~(z). 

For the free Hamiltonian Ho, V(x) = 0, so h - 1. Then 

~l(q)  2) ----- (TB(z, h) 1) k (r = ei(-k/4z)~o 2 = e,O,(z)~o2 (2.5) 

where 

- k  
01(z)-  4z (2.6) 

So inductively one gets 

~,(r 2) = (TB(z, h)(... (TB(z, h) 1) k-- .)k)k ((0 2) = e,O,(z)~2 (2.7) 
v 

n t i m e s  

where 

- k  
O.(z) = ( 2 . 8 )  

4 [ z + 0 ,  l(Z)] 
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Now if 0n converges to some 7, then we must have 

- k  

7 - 4 ( z + 7 )  

o r  

= �89 [-z + (z  2 - k )  ' /2] 

P r o p o s i t i o n  2.1. For each fixed z with Im z > 0 ,  On(z) converges 
to 

7 + ( z )  - �89 - z  + (z  2 - k )  ~/~] 

where Im x / >  0. 

Proof. For fixed z with Im z > 0, let 

- k  
v=S(u)= 

4(u + z) 

The fixed points of S are 

Also 

7+(z) = �89 (z ~ - k )  '/=] 
y_(z)  1 = ~[-z- (z ~- k) '/~] 

- k  
S(0) = - -  

4z 

So S t a k e s T + , 7  , 0 t o  7+, 7 - ,  -k/4z. Recall that i f w = T ( z )  i s a f r a c -  
tional linear transformation taking zl, z2, z3 to wl, w2, w3, respectively, 
then 

W - - W  1 W 3 - - W  2 Z - - Z I .  Z 3 - - 2  2 

W - -  W 2 W 3 - -  W 1 Z - -  Z 2 Z 3 - -  7.1 

Thus 

v--y_ - k /4z ) -7_JkO-7+Jku-7_}  

=\~I\~+~ J \ , , - 7 _ J  

=c(U--Y+] 
\u--7_/  
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where 

If  

then we have 

dT_ ~( (k/4z) + ~ + ~  = ( k T _ / 4 z ) +  7 +Y- 
c = \ ~ + J \ ~ 7 _ J  (kT+/4z)+7+7_ 

(k7 /4z)+(k/4) 
(kT+/4z)+(k/4) 

+ Z z - - ( z 2 - - k )  1/2 k 

~+ + Z  Z + ( z 2 - - k )  1/2 [ z + ( z 2 - k ) l / 2 ]  2 

vn = s ( . . .  ( S ( u ) ) . . . )  

n t i m e s  

Vn--~+__cn(U--Y+ ~ 
Vn--7-- \ u - ?  / 

N o w  Ic] l=(1 /k )  lz+(zZ-k) l /2[2 and  so we look  at  the m a p p i n g  
z -+ z + (z 2 - k) 1/2. 

F r o m  Fig. 1 we see tha t  for Im z > 0 ,  [ z + ( z Z - - k )  1/21 > N ~ '  SO ICj < ]. 
As n ~ o o ,  Icln--, 0, so 

v. -- 7__._..~+ ~ 0  
Vn--7 I 

which means  v,--+ ~ +. But 

which implies  

v .  = s ( . . .  ( S ( u ) ) . . . )  

n t i m e s  

- k  
vn = 4(v ,_1  + z )  

If  we take  u = 0, then v 1 = - (k /4z)  = 01(z ) and so v n = On(z), which gives us 

On(z) --, ;, + (z). I 

N o w  we also have 

~n((~0 2) = (TB(z, h)(. . .  (TB(z, h) 1) k . .  .)k)k (~p2) 

n t i m e s  

= eiO,(z)~2 ~ eiT+(z)~o 2 ~ fo(~ o 2) (2.9) 

A ='--Jk ] B' C=-jk A' ~ -Vk 

Fig. 1. 

C'  = - Jk  

The map z -~ z + (z 2 - k )  1/2. 
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So by the dominated convergence theorem we have 

Gfrer = lim (dlmf . . . . . .  [Z ) - -  i f eiz~o2eiy+~),p2ei~l/k).~+~2 d2cp 

- 1  
(2.10) 

z + [1 + ( l / k ) ]  ~+(z)  

for Im z >0.  It can easily be seen that Grree(E+ i0) exists for all E and so 
Nf~ee(E) is absolutely continuous and the density of states is then given by 

i (k + 1)(k - E2) ~/2 
pfree(E) = (k + 1 )2 _ 4E 2 

if E2 <k  

otherwise 

(2.11) 

In addition, we see from (2.11) that the spectrum 

For the Cauchy distribution with parameter 
G(z) = Gfrr162 +/2). Thus 

- 1  
C(z) : 

z+ i2+  [1 + ( l /k)]  7+(z + i).) 

of Ho, ~(Ho), is 

2 > 0 ,  we have 

(2.12) 

which yields 

p(E) =-1 Im - 1 (2.13) 
7r E + i 2 + [ l + ( 1 / k ) ] { - ( E + i 2 ) + [ ( E + i 2 ) 2 - k ]  1/2} 

So we see from (2.13) that for the Cauchy distribution, a ( H ) =  R and the 
density of states is analytic in the strip IIm E[ < 2. 

3. C O N V E R G E N C E  OF THE A V E R A G E D  GREEN'S FUNCTION 
FOR D I S T R I B U T I O N S  NEAR THE C A U C H Y  DISTRIBUTION 

Recall from Section 2 that we have for Im z > 0 

Gz(z, h) = i f ~(~0 2; z, h)E(TB(z, h)(... (TB(z, h) 1 )k.. .  )k]k+ t (q~2) d2~o 
7[ 

(/-- 1)times (3.1) 

If we let 
g(z, h, f )  = (TB(z, h) f )k  (3.2) 
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then (3.1) can be rewritten as 

G,(z, h) = i f fl(~o 2; z, h)[gZ(z, h, 1)(TB(z, h) g' ~ (z, h, l))](~o 2) d2~o (3.3) 

where 

g'(z, h, 1)=  [TB(z, h)(... (TB(z, h) 1) k.. .)~]k (3.4) 
l times 

For the case where the distribution is the Cauchy distribution, i.e., 
ho(q~2)=e ~o2, we know that gt(z, ho, 1) converges to the fixed point f0, 
where 

f0(~ o 2) = e/7+(z + i~)~2 

and 

7 + ( z ) = l [ - z + ( z 2 - k )  ' /2] ( I m x / > O )  

It will be shown that for distributions sufficiently close to the Cauchy 
distribution, gt(z, h, 1) converges to a fixed point f w h i c h  is close to fo. 

Recall the Banach space 

( 
S~ = i f :  [0, Go) ~ C absolutely continuous [ []flFs, 

k .  

} 
k=O 

where e is fixed and is in the interval (0, 2). Now define the Banach spaces 

{ 1 } 
= f s ~ "  I l f ] l ~ =  Ilfll 2 ~ , +  F, Ilf(*)ll~< +oo 

*=o (3.5) 

~ o =  { f e  ~11 : f ( 0 ) =  0} 

Let D , =  {zeC:  I m z >  - e } .  The first thing we need to do is show that g 
given by (3.2) is a continuous mapping from D~ x S~ x ~11 into ~ ,  i.e., 
g(z, h, f )  e ~ for all (z, h, f )  e D~ x S~ x 3~. Noting that ~ forms an 
algebra, it suffices to show that the mapping (z, h , f )  ~ TB(z, h ) f i s  a con- 
tinuous mapping from D~ x S~ x ~ into ~ .  It is straightforward to show 
the continuity of this map. Thus we need only show that TB(z, h)fe~,ff'~. 

Now (~o) 

1 f e ,~l~of,(q)2) d2~Ol (3.6) (Tf)(~~ 2) = rc 

(Tf)' (~0 2) = - L f e-i~~176 d2~Ol 
4n 
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and so 

II TB(z, h ) fH ~ <1 II(/~f)'ll g~Eo, oo),dr) 
TC 

1 1 
~-Hflloo ll~'llLl(Eo.~).dr)+--IJf'lt oo II/~llL~r oo 

7~ 

II(TB(z, h)f) ' l l  oo ~ < 1  ij/3fll Ll<o,~,ar) 

1 
~<4-s ][ftl ~ II/~lJL~(Eo.~),Jr)< oo (3.7) 

Finally, i f f E ~ ,  t h e n f e ~  and B(z, h ) f e ~ .  Since T is unitary on ~f], 
it follows that TB(z, h) f e ~ .  So we have that TB(z, h) f e ~ .  

It should be noted that although f((o 2) _= 1 is not in ov~l, TB(z, h) does 
map the function which is identically 1 to ~ .  Thus, g(z, h, 1) is in ~ and 
consequently so is gt(z, h, 1). 

We will study the convergence of {g"(z, h, f )} ,  where 

g"(z, h, f)  = g(z, h, gn- l(z ' h, f ) )  

If g"(z, h, f )  converges, then the limit must be a solution to the equation 

f =  g(z, h, f )  (3.8) 

Thus we will consider the equation 

F(z, h, f ) =  g(z, h, f ) -  f =O (3.9) 

3.1. THE DIFFERENTIABIL ITY OF F 

P r o p o s i t i o n  3.1. Let Im z o > - e .  Then the map F: D= x S~ x ~ ~ 
given by (3.9) is Frechet differentiable in a neighborhood W c  D~ x S~ x 
of .(Zo, ho, fo)- 

Proof. Let y = (z, h, f ) ,  Yo = (zo, ho, fo), and 

Ilylbc•215 [hhllso, IlfJl~,) 

We will assume throughout this proof that I[Y-YoHc•215 < ~ for some 
small 6 > O. 

Define the map Q: W--* ~ by 

Q(y)(r) = (B(z, h ) f)(r) = ]~(r; z, h) f(r) 
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It is straightforward to show that 

I l Q ( y ) - Q ( y o ) - Q ' ( y o ) ( y - y o ) l l ~ C '  f l y -  yollc• s=• ~ , 2  (3.10) 

where Q'(yo) is a bounded linear operator from C x S~ x ~ to ~ given by 

(Q'(yo) y)(r) = irzei~~ fo(r) + eiZ~ fo(r) + ei~~ f(r)  

Here C' is a constant which can be chosen uniformly for all Yo in a 
compact set in D~ x S~ x ~ (we will need this uniformity later). Thus we 
have the differentiability of Q in a neighborhood W of Yo. 

Now if T were a bounded linear operator on ~ ,  we would 
immediately have the same type of estimate for TQ'(yo) as (3.10). Let Z be 
the operator on ~ which is multiplication by e ~r with - ~  < - e  < Im Zo. 
Then zQ is differentiable with an estimate as in (3.10) and TZ -1 is a 
bounded linear operator on ~ .  It then follows that we will get the same 
type of estimate as in (3.10) for the derivative of (T;~-~)(zQ) = TQ at Yo. 

The differentiability of g, where g( y ) = g( z, h, f )  = ( TB( z, h ) f ) k, now 
follows easily. In fact, we again have 

[[Y- Yotlc•215 [[g(y)_g(yo)_g,(yo)(y_yo)l lx~l<~C,,  12 (3.11) 

where, as before, C" is a constant which can be chosen uniformly for all Yo 
in a compact set in D~ • S ~ x ~ .  | 

3.2. The Spectrum of the Linearized Operator Fe(zo, ho, fo) 
We will now examine the spectrum of the derivative Ff(z o, ho, fo). 

Our goal here is to show that Fy(zo, ho, fo) is nonsingular. Since 
Fs(zo, ho, fo) = gf(zo, ho, fo) - I, we need only show that 

gf(zo, ho, fo) = k( TB(zo, ho) fo) ~- 1 TB(zo, ho) 

does not contain 1 in its spectrum. 
Let 

f~(q~2) = e,~O2fo(~O 2) 

Then for I tl small 

(TB(zo, ho) f~)(cp2)=exp{-- i[4(zo+i2+7+(Zo+i2)-- i t )] - lcp 2 } (3.12) 

where Im Zo > -2 .  Then we have 

[(TB(zo, ho) fo) ~-I  TB(zo, ho)f~](~o 2) ---er(t)~Zfo(Cp2 ) = f~(t)(~p 2) (3.13) 

822/69/1-2-19 
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1 ) 
4[z o + i2 + 7 + (Zo + i2) -- it] 

4[q(z o + i2) - it] 

and 

q(z) = z + ~ + (z) 

If A = k[TB(zo, ho) fo]  k- 1 TB(zo, ho), then 

Aft(cp 2) = kfr(t,(q~ 2) 

and so 

(3.14) 

(3.15) 

(3.16) 

~ n 

A(q~Znfo ) = A  ~-~ f , t ,=o 

#n 
= ~-;  Af, l,=o 

= k ~ ; f ~ , ) l , = o  (3.17) 

We can now prove the following about the spectrum of the operator 
g1(zo, ho, fo) on ~ where Im Zo > - 2 :  

Propos i t ion  3.2. If Im Zo> -)~, the operator 

k[TB(zo, ho) fo]  k-1 TB(zo, ho): ~ ~ 

has eigenvectors of the form (q~2n+a n 1q~2~"-l)+ ""  +ao)fo for every 
n = 0 ,  1, 2,... and a o = 0  for n>~ 1. The corresponding eigenvalues are 
E, = k[2q(zo + i2)] 2,, so that IE=I < 1 for n ~> 1 and En --* 0 as n ~ +oo. 

Proof. Equation (3.16) tells us that 

k[ TB(z o, ho) fo]  ~-1 TB(zo, ho) fo= kfo 

So for the case n = 0 we are done. We now seek an eigenvector of the form 
(~oz+ a)fo. It must satisfy the equation 

A(q) 2 + a) fo = El(q 92 + a) fo (3.18) 
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Now 

0 ~fr(t) 
~ f , ( o  =---&-r r'(t)= q~2r'(t) er(~ ) (3.19) 

and Eq.(3.14) gives r ' ( t ) = [ 4 ( q - i t ) 2 ]  -1 and r ' (0)=(4q2) 1 [here 
q = q(zo  + i2)] .  So using Eq. (3.17) with n = 1 gives 

O ,=o k cp2f ~ (3.20) A(cp2fo)=k~f , (o  = 4q---7 

Substituting (3.20) into (3.18) gives 

k fo=(Sl o2+Ela)fo (3.21  

which implies E 1 = k/4q 2 and a = 0. Since q(z) = z + 7+(z), it follows that 
2 q ( z ) = z + ( z a - k )  1/2. From Fig. 1 we see that for I m ( z o + i 2 ) > 0 ,  
12ql>x/-k, or, equivalently, [EI [<I .  So A(cp2fo)=El~o2fo with ]Eal= 
Ik/4q21 < 1. 

For n ~> 2 we have 

0 n 
0~f,(,)  = [~o2~(r'(t))" + --- + q~2r~n)(t)] er(t)r ) (3.22) 

and so 

A(q~2"+-..  +ao)fo(~O2) = [k(4q2)-" ~o2n + ... + kao] fo(~p 2) (3.23) 

The eigenvector equation is 

[-k(4q2)-, r . . .  +kao)]fo(~O2)=E,(~o2,+ ... +ao)fo(~p2) (3.24) 

so that E,=k(4q2)  -~ and we can solve for the coefficients a,_~ ..... ao. 
Since (3.24) implies that kao = E, ao, we must have ao = 0. | 

P r o p o s i t i o n  3.3. The set of eigenvectors in Proposition 3.2 form a 
complete set in orgy. 

ProoL Consider the isometry 

=2-1/2(1 --20): 5r ~ ~ J~2([0, oo), dr) 

where Of(r)=f'(r),  - o ~ 1  is ~ o  with real inner product Re(. ,-)~e~, and 
/~2(E0 , oo), dr) is L2([0, oo), dr) with real inner product R e ( . , .  )LZ(Eo, ~),arl" 
That n is an isometry follows from 
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0 1 ( f ,  g>#~ = 5 ( f ,  (1 - 4c? 2) g > La(EO, o~),dr) 

= 1((1 - 20) f, (1 --20) g)z2<o,o~),ar) 

= (~r(f), g(g))c~(Eo, oo),ar) (3.25) 

Note that for functions f a n d  g in L2(R, dr) which o b e y f ( - r ) = f ( r )  and 
similarly for g, we have 

Re ( f ,  g)L2([O, ov),dr)= ( f ,  g)L2(R,(1/2)dr) 

Also note that rt is not onto, e.g., no function in ~ o  is taken to exp(iy + r). 
Let K =  {r"e e+~, n = 1, 2,...}. We will need the following result. 

i . omma  3.4. K w  {exp(iy+r} is complete in LZ([0, or), dr). 

ProoL Suppose 

(tl, rmei~+r)Z2(Eo,~),ar)=O forevery m = 0 ,  1,2 .... 

F o r T + = s + i t ,  t > 0 ,  wehave  

(q, ei*:re# +~ ) L2([o,~),a~) = (q, e-~r ei(k + ~)~ ) T2([o,~),a~.) 

= �89 + s) (3.26) 

where A is the Fourier transform in L2(R), r  e -*j~d, and t/is extended 
so it satisfies r / ( - r ) =  q(r). Also for k e R  and Ik[ small we have 

(tt,#kro'~+*\ ~ (ik)m = r e )r~2(~o,~),a~) = 0 (3.27) 
m=O 

Then (3.26) and (3.27) imply that r/= 0. Thus, the orthogonal complement 
of the set K w  {e s~+'} is 0, so K w  {e ~7+r} is complete in L2([0, Go), dr). | 

We can now complete the proof of Proposition 3.3. Now 
span(K w {e ~+r}) = span(~(K) u {e e~+~ } ). Since rc is an isometry, {e sT+r } is 
linearly independent of K, and K ~  {e #+~} is complete in L2([0, co), dr), it 
follows that ~(span K) has codimension 1 in L2([0, co), dr). Also, since 

it(span K) c zc(o~ ~ ~ [fl( [0, co ), dr) 

and 

x(~~ # L2(EO, ~), dr) 

we have that 7r(spnn K)= n(~~ Thus, K must be complete in ~o. 
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Since ~ can be decomposed as ~ 1 =  Ce '~+~ |  ~ it follows that 
Kto {e ~+r} is complete in ~ .  The inner product is completely determined 
by its real part, so we have that Kw {e i~+~ } is complete in Jt~. Thus, our 
eigenvectors form a complete set in ~1. | 

So we have proven the following result. 

Theorem 3.15. The spectrum of the operator gf(zo, ho, fo) on 
consists solely of the eigenvalues E,=k[2q(z+i2)]  2,~ with n = 0 ,  1,2 .... 
and the operator gf(zo, ho, fo) restricted to y fo  has spectral radius strictly 
less than 1. 

We have established that gf(zo, ho, f0) restricted to ~ o  has spectral 
radius less than 1. We would like to show that this property holds for 
gy(zo, ho, fo) restricted to J7 ~~ Let B~ and B e be the operators multiplica- 
tion by fll and f12, respectively. Klein and Speis (12) and also March and 
Sznitman (6) have proved the following result. 

k e m m a  3.6. Let {fn}n~N be a sequence in J~l such that 
IIf, l l ~ < M  for all h e n  and some M <  +oc.  Also let fll and f12 be such 
that lle~'k~fllk)(r)ljo~<C for some C <  +00, cqk>0 , i = 1 , 2 ,  and k = 0 ,  1. 
Then there exists a subsequence {f~,}~N such that {B2TB!f~,}~N is 
Cauchy in ~ .  

We will now show that Lemma 3.6 holds in a/Tq~. 

k o m m a  3.7. Let {f ,}n~y be a sequence of elements in C(R q) such 
that Ilfnllo~ ~<M for all n ~ N  and some M <  +oo. Also let fll and f12 be in 
Co(Rq), the space of continuous functions on R q with compact support. If 

is the usual Fourier transform in R q, then there exists a subsequence 
{fn,}i~N such that {Bz~Blfn,}i~N is Cauchy in C(Rq). 

ProoL Fix n. Then 

~ [ f l l  fn'](Y) = (2n)--q/2 f e~X. yfll(x ) f~(x) dx d 

= (2~) -q/2 _f,,~ e'X"31(x)fo(x) dx 
where D 1 is the support of ill. 

Now 

l Y ( f i l L ) ( y ) -  ~( f l lL) (y ' ) [  <~ C l y -  y'l (3.28) 

Also 

['~(fllfn)(Y)[ ~< C 1131LIIL,(Eo,~),ar) ~< CM Ilfl~llLL(Eo, o,),a~)= C" (3.29) 
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Thus {YB~f.}.~ N is a family of bounded equicontinuous functions. Since 
f12 has compact support, it follows by the Arzela-Ascoli theorem that there 
exists a subsequence {f~}i~N such that {Bz~BIf,,}~N is a Cauchy 
sequence in C(Rq). | 

Lemma 3.8. Let {fn},~N be a sequence in ~ such that 
t lf ,[l~ ~<M for all n e N  and some M <  +oo. Suppose fit and f12 are such 
that Ile~'~fll~)(r)tl~<C for some C <  +0% a~k>0, i = 1 , 2 ,  and k = 0 ,  1. 
Then there exists a subsequence {f,,,}e~N such that {B2TB~f,,}~N is 
Cauchy in ~ .  

ProoL We first assume that fla and f12 have compact support. Using 
Leibniz' rule and (3.7), we have 

1 E f12((p2) f e-i~~ d2q )' [(B2TB')f](~P2) = - ~ k~+k2=l 

1 2 f e i~' [(B2TB~)f]'(tp2)=---~fl2(q) ) ~fl~(q)'Z)f(~o'2) d2~0 ' (3.30) 

1 E fli((p2) f e-i~'. ~fl~k,)((p,2)f(k2)(~p,2) a2g0, 
7~ kl + k 2 ~  1 

From Lemma 3.6, Lemma 3.7, and the definition of 5~1, we get that there 
exists a subsequence {f.,}i~N of {f.}.~N such that {B2TBlfn,}i~N is 
Cauchy in ~ .  

Let {gq}q~N be a family of real-valued functions defined on [0, ~ )  
with the following properties: 

(1) gq is of class C~([0,  ~ ) )  and for some M <  + ~ ,  

Ig(qk)(r)l ~<M for all q~N,  r e  [0, oo), and k = 0 ,  1 

(2) gql[O,q) = 1 and gql[q+l, oo)=O for all q~N.  

Let Gq denote the operator multiplication by gq, q ~ N. I f f ~  ~ ,  then 

IlGqBlf --Blfl[~ 
[l(GqB~f)'- (Bx f)'[[ 

: H(gq-- 1) flaf[Ioo 

= ]](gq-- 1)(fl lf) ' l[~ = IIg'qfl,fll~ 
(3.31) 

But fl~k)gq ~ fl~k) in the sup norm as q ~ + ~  for k = 0, 1 and g'qfll ~ 0 in 
the sup norm as q ~ + ~ .  So, again using Lemma 3.6 and the definition 
of ~ ,  we have the lemma. | 

Lemma 3.8 gives the following result. 
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Proposition 3.9. The operator gF(zo, ho, fo) restricted to ~ o  has 
spectral radius strictly less than 1. 

Proof. From Lemma 3.8 we have that gf(zo, ho, fo) is a compact 
operator on j~0. Thus we know that the spectrum of gs(zo, ho, fo) is a 
discrete set having no limit points except possibly 0 and any element in the 
spectrum of gs(zo, ho,fo) is an eigenvalue of finite multiplicity. Since 
~ o  c Wo, every eigenvalue of o@ ~ must be an eigenvalue of y(~o. From 
Proposition 3.3 all of the eigenvalues of Jr1 ~ are of the form E, = k(1/4q2) ~ 
with n >/1. Since IE, I < 1 for n >/1, it follows that the spectral radius of 
gi(zo, ho, fo) is strictly less than 1 when restricted to j,@o. | 

3.3. Stability of the Fixed Point fo 

We now introduce some ideas from nonlinear analysis (see, e.g., 
Berger I13) and Hirsch and Smale(~4)). 

We will need the following well-known result. 

(i) 

(ii) 

Since 

k e m m a  3.10. If there exists an operator A" W--.B such that the 
spectral radius of A, p(A), is less than 1, then there exists an equivalent 
norm [t'[le with [[Aflle<~p [If He for some # <  1 and for a l l f ~ B .  

Proof. Now p ( A ) = l i m n ~  HA[]I/"=2<I, so there exists some N 
such that for n ~ N ,  lEAn[] ~<pn< 1. So Y',,~- o [IA"[] < ~ .  Define 

[[f[le= ~ [[Anf[[ (3.32) 
n = O  

Clearly [l" [1~ is a norm. We want to show the following: 

C1 [[fll ~< Ilflle ~< C2 []fll for some Cl, C2 > 0 .  

IIAflle<~ IIfH~ for some ~t< 1 and a l l f ~ B .  

and 

]lfH ~< 1If lie= ~ LIA'fll (3.33) 
n = 0  

n = O  n O 

where C2 - Z n = o  HA"II, we have (i) with C1 = 1. Now 

UAfHe = ~ []Anfl] = ]l f i l l -  !]fU (3.35) 
n = l  
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SO 

IIAflle=l Ilfll _~ 1 
I[flle - - [ ~ e  ~ 1--C-~2 1 (3.36) 

P r o p o s i t i o n  3.11. There exists a neighborhood V around)Co such 
that gn(zo, ho, f )  converges to fo for every f e  V with f (0)  = 1. 

Proof. Since gf(z o, ho, fo ) has spectral radius less than 1 when 
restricted to ~V~l~ we can define an equivalent norm on o,~ ~ by 

I[flle = ~ Ilg~(zo, ho, fo ) fU~,  (3.37) 
n- -O  

and recall that there exists some/~ < 1 such that 

Ilgj(zo, ho, fo) flle ~ t  Ilfl[e (3.38) 

for a l l f E ~  ~ (Lemma 3.10). 
Let 0 < e < 1 - - /~  and let C1 and C2 be positive constants such that 

C1 [Iflle~ < [Ifl[~ ~< C2 IIfHe (3.39) 

for all f e o @  ~ From the definition of the derivative there exist a 
neighborhood V c ~ of fo so small that 

II g(zo, ho, f )  - g(zo, ho, fo) - gi(zo, ho, f o ) ( f  - fo)ll ~ 

~ (C1 /C2)  II/-foll  ~, (3.40) 

for every f e  V. Since f (O)= (TB(z, h)f)(O) and g(zo, ho,f)  = (TB(zo, ho)f) k, 
it follows that if f(O) = 1, then both g(zo, ho, f )  - g(zo, ho, fo) and f - f o  
will belong to ~ o .  So, using (3.39) in (3.40) gives 

IIg(zo, ho, f ) - g ( z o ,  ho , f o ) -g f ( zo ,  ho,fo)(f-fo)lle<~ ~ IIf-fol[ ~ (3.41) 

Thus 

[I g(zo, ho, f )  - g(zo, ho, fo)lh e <~ U gf(Zo, ho, f o ) ( f  -- fo)lle + e Ilf--fol[ e 

~< # Ilf-foHe + e t l f-fol le  

= v I[f--fO[ie (3.42) 

where v =/~ + e < 1. Using the fact that g(zo, ho, fo) =fo,  we have 

II g"(Zo, ho, f )  - fo lie ~< V n Ilf--fo lie (3.43) 

and so g"(z o, ho, f )  converges to fo for all f ~  V with f(O) = 1. | 
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3.4. Convergence of Gl(z, h) in a Neighborhood of (Zo, ho) 

We now introduce the notion of an analytic mapping (see Berger, ~13) 
p. 84). 

De f in i t i on  3.12. Let X and Y be Banach spaces over the complex 
numbers, and let U be a connected open subset of X. Then the mapping f 
from U into Y is complex analytic if for each x E U, h e X, y* E Y* (Y* 
being the dual space of Y), y* ( f ( x+  th)) is an analytic function of the 
complex variable t for It] sufficiently small. 

Note that for the case X =  Y= C, the usual definition of an analytic 
function is implied. 

Now if F is Frechet differentiable in a neighborhood W around 
(Zo, ho, fo), then F is analytic in W (see Berger, ~3) pp. 84-88). Recall that 
Fs(zo, ho, fo)= gr(Zo, ho, f o ) -  I and the spectrum of gj-(zo, ho, fo) does not 
contain 1. Thus Fs(zo, ho, fo) is invertible and we can apply an analytic 
implicit function theorem (see Berger, (~3) p. 134) to conclude the existence 
of an analytic mapping f :  U ~  which is the unique solution to 
F(z, h, f(z,  h) )=  0 in a neighborhood U around (zo, ho) with f(zo, ho) =fo .  
Note that since TB(z,h) preserves the value at 0, we must have 
f (z ,  h)(0)= 1. 

Since the mapping (z, h ) ~ f ( z ,  h) is continuous, it follows that there 
exists a neighborhood U' = U around (Zo, ho) such that if (z, h) E U', then 
f(z,  h) e V. The mapping (z, h) ~ gi(z, h, f (z, h)) is also continuous, so 
that for/~' satisfying / ~ < # ' <  1, where # is the same as in (3.38), we can 
shrink U', if necessary, to a neighborhood U" ~ U' of (Zo, ho) such that if 
(z, h) ~ U", then 

[[ gf(z, h, f(z,  h)) stle ~< #' []sHe (3.44) 

for every s ~ J ~  ~ and where [I "[]~ is given by (3.37). 

Proposition 3.13. There exists a neighborhood UI of (Zo, ho) and 
a neighborhood V1 offo such that if (z, h) ~ UI and if s e V1 with s(0) = 1, 
then g"(z, h, s) converges to f(z,  h). 

Proof. Recall that V is a neighborhood offo  such that gn(zo, ho, f )  
converges tOfo for every f i n  V with f ( 0 ) =  1 and U" is a neighborhood of 
(Zo, ho) such that if (z, h) is in U", thenf(z ,  h) is in Vand (3.44) holds. Let 
V '=  { f ~  V : f ( 0 ) =  1} and let A be the mapping from U"x  V' to R + given 
by 

I/g(z, h, s ) -  g(z, h, f(z,  h ) ) -  gf(z, h, f(z ,  h))(s-  f(z ,  h))lle A(z, h, s) = 
IIs--f(z, h)lle 

(3.45) 
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when sCf(z,  h). If we define A(z, h, s) to be 0 when s=f(z,  h), then the 
proof of Proposition 3.1 [in particular, the estimate (3.11)] immediately 
gives the continuity of A(z, h, s) in a neighborhood of (Zo, ho, fo). 

Since A is continuous at (z0, h0, fo), for any e' > 0, there exists a 6 > 0 
such that if (z, h, s)~ B~((Zo, ho, fo)) [the open ball of radius 6 around 
(Zo, ho, fo) in D~ x S~ x ~1]  with s(0) = 1, then 

[A(z, h, f )  - A(z o, ho, fo)[ < e' (3.46) 

But A(zo, ho, fo) = 0, so that (3.46) is equivalent to 

A(z, h, s) < e' (3.47) 

If we choose e '<  1- /~ ' ,  then we have, as in (3.43), 

]1 g"(z, h, s) - f ( z ,  h)[ne ~< v" ][s-f(z, h)[]e (3.48) 

where v' = e' + #' < 1. Recalling that 

U(z, h,f)Uc•215 = max(ll(z, h)llcxs~, [If[I ~ )  

we have that if (z, h) e U1 = B~((Zo, ho)) and if s e V1 = B~(fo) with s(0) = 1, 
then g'(z, h, s) converges to f(z, h). | 

Since g ' (z  o, h o, 1) converges to fo, there exists an N such that for 
every n ~> N, g"(zo, ho, 1) is in V1. Now g(z, h, 1) is continuous in (z, h) and 
since gn(z, h, 1) is just composition n times, it, too, is continuous in (z, h). 
Thus, there exists a 6N such that (z, h)eBaN((zo, ho))C U1 implies that 
gN(z, h, 1)~ V1. So, for (z, h)EB~N((zo, ho)), we have g"(z, h, 1) converging 
to f(z, h). 

Thus, for (z,h)~B~N(zo, ho) we have that the integrand in (3.3) 
converges to the analytic function 

fl(q~ 2; z, h )[f(z, h )( TB(z, h)f(z, h))](q~ 2) 

[-analytic in the sense of Definition 3.12 as a mapping from B~u((Zo, ho)) to 
~ ] .  Since fl(q~2; z, h) decays exponentially and 

[g'(z, h, 1)(TB(z, h) gZ I(Z ' h, 1))](~o 2) 

is uniformly bounded in B~u((zo, ho)), we can apply the dominated 
convergence theorem to conclude that Gt(z, h) converges to the analytic 
function G(z, h) given by 

G(z, h) = i  f fl(q~Z; z, h)[f(z, h)(TB(z, h) f(z, h))](q) 2) dZq~ (3.49) 
7~ 
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Again the analyticity is in the sense of Definition 3.12 as a mapping from 
Ba~((zo, ho)) to C. Note that if we fix h, then G( -, h) is an analytic function, 
in the usual sense, from Ba~(Zo) to C. 

4. A N A L Y T I C I T Y  OF THE DENSITY OF STATES IN A FINITE 
STRIP 

T h e o r e m  4.1. Let h o be the characteristic function of the Cauchy 
distribution with parameter  2. For any ~ and e '  satisfying 0 < ~ ' <  ~ < 2 
and any bounded interval /, there exists a neighborhood U around ho 
in the space S~ such that the density of states p(E) is analytic in 
{E~C:  ReE~I ,  I ImEI  <~ '} .  

Proof. In Section 3 it was shown that for every Zo with Im Zo > - ~  
there exists a 6 > 0  such that in the neighborhood B~((Zo, ho)) around 
(zo, ho), Gl(z,h) converges to G(z,h) [given by Eq. (3.49)] for all 
(z, h)eB~((Zo, ho)). Let I be a bounded interval and let R~,= {z~C:  
R e z e / ,  [ I m z l < 7 ' } .  Then we can find a finite number  of points zi, 
i =  1 ..... m, in R~, and corresponding positive real numbers 6(zi) such that: 

(i) Ba(z~l((zi, ho) ) is a neighborhood around (zi, ho) such that 
Gt(z, h) converges to G(z, h) for all (z, h) ~ Ba(z,)((zi, ho)). 

(ii) Ui~x Ba~e)(zi) covers R,,. 

Take CSmi n = min 6(z~) and let U = Bamm(ho). Then for any h e U and z e R~,, 
Gt(z, h) converges to G(z, h) and by the remarks at the end of Section 3, 
we also have that G(-, h) is analytic in R~, for all h e U. | 

5. A N A L Y T I C I T Y  OF THE DENSITY OF STATES FOR HIGH 
ENERGY 

Following Constantinescu et al., (15) we derive a random walk expan- 
sion for the matrix elements of the resolvent. For Im z r 0 we get 

(x[ R(z)[y> = ~ ( - 2 )  -~ 17 Dj(z) nj(~,) (5.1) 
~o:x ~ y j ~  B 

where the sum is taken over all random walks starting at x and ending at 
y, nj(~o) is the number of times the walk visits site j, n is the length of the 
walk and is given by 

n=Ij~B n j ( ( . o ) ]  - -  1 
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and finally 

Dj(z) = - z  + V(j) 

The expansion (5.1) will converge absolutely if 

[Im z[ > 

Now integrate both sides of (5.1) with respect to dfi = I~j~ B dp: 

f (xl n(z)ly) clfi(v)= Z 
c o : x  ~ y 

and recall that 

(5.2) 

( - 2 )  -n I~ fd t~(v ) ( - z+v)  ~J(~'~ (5.3) 
. jE B 

G(z)= f (,x[ R(z) ix) dfi(v) 

We can now prove Proposition 1.2. 

Proof of Proposition 1.2. We have from (1.6) 

G,(x, y; z)= (xl ( H t -  z) -I [y> = ( - 2 )  " 1~ [ - - z  + V(j)] ~A~'~ 
o o : x ~  y j E B  

co s t ays  in A l  

where the sum is taken over all walks from x to y which stay in At. Then 

[G(x , y ; z ) -Gt (x , y ; z ) [=  ~ ( - 2 )  " 1~ [ - z + V ( j ) ]  njr 
o o : x ~  y j ~ B  

~) l eaves  A l 

and if [Im z] > x/k, then the right-hand side of the above equation is just 
the tail end of an absolutely convergent series. 

Now let A = {z: I m z > 0 } .  Since 

IGt(x,y;E+ie)l<-.. 1- forevery x , y ~ A l ,  e > 0  
g 

we have that Gt(x, y; z) is uniformly bounded for Im z ~> e' for every e' > 0. 
Since Ht is self-adjoint, Gt(x, y;z)_ is analytic on A. Finally, since 
Gt(x, y; z)--+ G(x, y;z) for I m z > x / k ,  we can apply Vitali's theorem to 
conclude that Gt(x, y; z) --+ G(x, y; z) on A. | 

We propose to analytically continue each term on the right-hand side 
of (5.3) in z beyond the domain specified by (5.2) and across the real axis. 
We will prove absolute convergence of the analytically continued expan- 
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sion and this will give an analytic continuation of the left-hand side of (5.3) 
in z. Since the density of states p(E) is the discontinuity of (1/2rci)G(z) 
along the real axis, the continued expansion will allow us to analyze p(E) 
as well. 

Fix the connectivity k and for e > 0 let 

and 

= 5 ( k + l )  + 2e (5.4) 

r=�89 (5.5) 

Our conditions on h will be stated in terms of the difference h(t)-ho(t  ). 
We will require h -  h 0 to be in the space $6. 

For  the probability distribution # with such a characteristic function 
h we make the following observations (see, e.g., Bitlingsley(16~): 

(i) /1 has a density w, i.e., d#(v)= w(v)dr. 
(ii) w is analytic in the region {veC:  Ilmv[ <6}\{+_i2}. 

(iii) p(E, h)=supl~_Et_r  Iw(h, v)l --*0 as E---, +_oo. 

We now establish the convergence of (5.3). Let z = E +  it/, E real, and 
consider 

Define 

and for t /<  0 

while for q > 0 

Finally 

and 

In(z ) = f d#(v)( - z  + v) -~ 

F 1 = {V: [Im vl = 0, Re v ~< E -  r} 

F;  = {v: I v - E l  = r ,  0 < a r g ( v - E ) < r c }  

F~- = {v: Iv -El  =r, - r c < a r g ( v - E )  <0 }  

F 3 = {v:  jim v[ =0 ,  E + r < ~ R e  v} 

F • = F 1 k.) F ~  k.J F 3 
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For t /< 0 and IEI > r 

I.(z) = f d#(v)(-z  + v)--n : f F -  d ~ ( D ) ( - - Z  "q- D )  n 

We now analytically the last integral in the above equation to q < e/2. 
Then, in this domain, we have 

fr d#(v)(-z+v)-" <~fr d#(v) r-n<~r " 
I~F3 IUF3 

and 

So 

d#(v)(-z+v)-" <<.nr ( k +  1)+  sup Iw(v)l 

fr_d#(v)(-z+v)-" ~ < [ ~ ( k + l ) + 2 1  "[l+~rp(E,h)] 

It now follows that given 0 < e' <e/2, there exists some finite E.,(h) such 
that for [El > E~,(h) we have 

II,,(z)l ~< [ �89 1) + e ' ] - "  (5.6) 

Inserting (5.6) into (5.3), we obtain 

f dfi(v) (xl R(z)lY) 

<<. ~ 2-"[-[ II.j(o~)(z)[ 
co:x ~ y . ] e B  

2 2 "I-[ (k+l)+~' 
co:x --* y j ~ B 

= 2 2 -~  ( k + l ) + ~ '  
m : x  ~ y 

= (k-t- 1) + , '  2 [ ( k +  1) + 2e ' ] - "  
o~:x ~ y 

= ( k +  1 ) + e '  ~ [(k + 1)-t- 2e ' ] - "  
n =  l x - -  y [ m : x  ~ y 

I~ol =n 
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where, as in Section 1, I x - Y l  is the length of the shortest path from x to 
y and [o)l is the length of the walk ~o. Now the number of distinct walks 
of length n starting at a given point is equal to (k + 1)". So 

ctfi(v)(xlR(z)ly) ~ (k+l)+e' ~, 1+k+1/ 
n = [ x  - Y l  

Thus, we have convergence of the analytically continued expansion of the 
left-hand side of (5.3) for t /< 0 and ]El > E~,(h). A similar result holds for 

> 0. Now the density of states is given by 

1 l i m f d f i ( v ) [ ( x l  R ( E + i r l ) I x ) - ( x l  R ( E - i q ) [ x } ]  
p(  E )  = 2rc--i ~ ~ o J 

For [El > E~,(h) both St- and S t -  converge and are analytic in the strip 
jim El < e'. We can now easily prove the following result. 

Theorem 5.1. Fix k and ~ > 0 and let 6 be given by (5.4). For any 
e' in the interval (0, e/2) and any C <  +o% there exists some E(e', C ) > 0  
such that if h satisfies I[h-hoHs~<C, then p(E) is analytic in 
{EeC:  [ReE] >E(e', C), [ImE[ <e'}.  

ProoL In view of what has been done, it suffices to show that p(E, h) 
goes to 0 unformly as E ~  -t-oo for all h in ][h-hol[so<C. But 

Iw(h,v)[= l f eit~h(t)d t 

<~- + e'tO(h(t)-ho(t)) 

fl 1 1 r rc ~ + ~ ei'~(h(t)-h~ dt J 

<~- - -  + 

7r 22+v  2 

which immediately gives the uniform convergence of p(E, h) to 0 as 
E--* _+oo. | 

Note that the width of the strip can be made arbitrarily large, but the 
wider the strip, the stronger the restriction placed on h - h 0 .  
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6. A N A L Y T I C I T Y  OF T H E  D E N S I T Y  OF S T A T E S  IN A STRIP  

We now combine the results of Sections 4 and 5 to prove Theorem 1.1. 

Proof of Theorem 1.1. Choose 6 > l ( k + l ) ,  and then take 
e=�89189 From Theorem 5.1 we know that for any e' in the 
interval (0, e/2) and C <  +o% there exists an E(e', C ) <  +oe such that if h 
is in llh-holls~<C, then p(E)is analytic in {EeC:IReEI>E(e',C), 
IIm El <~'}. 

Now choose ~<min (6 ,2 )  and c(e(0,  cQ. Let I be the interval 
[-E(s',  C), E(e', C)]. Then we know from Theorem 4.1 that there exists a 
neighborhood Br(ho), with r ~< C, around h o in the space S= such that if 
h e B r(ho), then p(E) is analytic in the region { E e C: Re E e L ]Im El < c~' }. 
So if [Ih-holls~<r, then, since 6 > ~ ,  it follows that [Ih-hoUs<r and so 
we have the analyticity of p(E) in the strip I ImE[<e" ,  where 
e" = min(e', c(). | 

A P P E N D I X .  THE  E R G O D I C T H E O R E M  ON THE BETHE 
LATTI C E 

Define the level number of a point x, l(x), to be the distance from the 
origin 0 to x, i.e., l(x)= Ix]. The points on the Bethe lattice will be labeled 
as follows: 

(i) Label the points whose level number is 1 by (al), a l =  1, 2,..., 
k + l .  

(ii) Label the points whose level number is 2 and whose path to the 
origin must pass through (al) by (al, a2), a2 = 1,..., k. 

(iii) Continue the process so that any point x whose level number is 
l is given by the/-tuple x = (al, a2,..., at), where al = 1 ..... k + 1, ai = 1,..., k 
for i >  1, and whose path to the origin must pass through (a~ ..... at ~), 
(al ..... at_z), etc. (see Fig. 2). 

Once the points in B are labeled as above, let ~1 be the transformation 
given by 

z l 0 = ( 1 )  

zl(al,...,al)=(1, al ..... at) if l <<,al <<,k 

"cl(k + 1, a2,..., at) = (a2 + 1, a 3 , . . .  , at) 

The transformation z~ essentially "lifts up" the lattice and places the origin 
at (1) and then orients it by placing (1) at (1, 1), (2) at (1, 2), etc. (see 
Fig. 3). 

Now define z2 to be the transformation given by 

z2(al ..... at) = ((al + 1 ) mod(k + 1), (a2 + 1) rood k ..... (at + 1) mod k) 
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B 

Fig. 2. T h e  labeled Bethe lattice (k = 2). 
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The transformation ~2 can be viewed as a simultaneous rotation about  each 
vertex (see Fig. 3). Note that any Point x whose level number is dl can be 

.~a2~.ala d2 <~ (k + 1 ) k a~ - 1 written uniquely as ~2 oi v with 0 ~< 
As in ref. 1, define f (co)=f(H(~o)(O,  0)), where f is a continuous 

function with compact  support. Now define the operators Ti by 

Tico(x) = co(zix) 

for i = 1, 2. Using T1 and T2, we have, for x ~ At, 

f (H(og))(x ,  x ) = f ( T g 2 T a l e ) )  (A.1) 

~B 

N~ " 

Fig. 3. 

~B 

T h e  t r ans fo rma t ions  ~1 and  % (k = 2). 

822/69/1-2-20 
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The right-hand side of (1.2) then becomes 

1 1 
IA,-----~ tr(f(H) )~,)=l~t[ ~ f(H(co))(x, x) 

xEA~ 

1 
T 2 T 1 a~) (A.2) 

IAtl O ~ d l ~ t  
O<~d2<~(k+l)kdl I 

We now apply a multiparameter pointwise ergodic theorem due to 
Zygmund (see ref. 17) to obtain 

1 
l i m -  ~ - d2 J~ (A.3) f ( T  2 T 1 ~o)=E(E(f(~o)I~)1  4 )  a.e. 
t ~  IAtl o_<,~<.l 

0~<d2~<(k+ [)kd1-1 

where ~ and ~ are the a-algebras of the invariant sets of Tt and T2, 
respectively. 

Noting that T~ is ergodic, it follows that 

E(E(f(~o) Io~)I~)=E(f(o~))=E(f(H(~o))(O,O)) (A.4) 

giving the a.e. convergence of S f d N t  to ~ f dN. The vague convergence of 
dNt to dN is given in, for example, ref. 1. 
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